Improving EEG Decoding via Clustering-Based Multitask Feature Learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicative Multitask Feature Learning

We investigate a general framework of multiplicative multitask feature learning which decomposes individual task's model parameters into a multiplication of two components. One of the components is used across all tasks and the other component is task-specific. Several previous methods can be proved to be special cases of our framework. We study the theoretical properties of this framework when...

متن کامل

Improving Articulatory Feature and Phoneme Recognition Using Multitask Learning

Speech sounds can be characterized by articulatory features. Articulatory features are typically estimated using a set of multilayer perceptrons (MLPs), i.e., a separate MLP is trained for each articulatory feature. In this paper, we investigate multitask learning (MTL) approach for joint estimation of articulatory features with and without phoneme classification as subtask. Our studies show th...

متن کامل

Improving fuzzy c-means clustering based on feature-weight learning

Feature-weight assignment can be regarded as a generalization of feature selection. That is, if all values of featureweights are either 1 or 0, feature-weight assignment degenerates to the special case of feature selection. Generally speaking, a number in 1⁄20; 1 can be assigned to a feature for indicating the importance of the feature. This paper shows that an appropriate assignment of feature...

متن کامل

On Multiplicative Multitask Feature Learning

We investigate a general framework of multiplicative multitask feature learning which decomposes each task’s model parameters into a multiplication of two components. One of the components is used across all tasks and the other component is task-specific. Several previous methods have been proposed as special cases of our framework. We study the theoretical properties of this framework when dif...

متن کامل

Co-Clustering for Multitask Learning

This paper presents a new multitask learning framework that learns a shared representation among the tasks, incorporating both task and feature clusters. The jointlyinduced clusters yield a shared latent subspace where task relationships are learned more effectively and more generally than in state-of-the-art multitask learning methods. The proposed general framework enables the derivation of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2021

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2021.3053576